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The problem of determining the thermophysical characteristics of
barrier (wall) constructions reduces to a problem in the theory of
optimum control. For the solution of the latter we employ the Pontry-
agin optimization principle and we devise a computation scheme that
is convenient for purposes of programming on an electronic digital
computer, We present some calculational results based on experi-
mental data derived in the thermophysical testing of the outside walls
of various multipaneled buildings.

The thermophysical testing of wall designs is pres-
ently based entirely on the quantitative relationships
governing the steady-state thermal regime [1]. How-
ever, the determination of thermal indices for outside
walls on the basis of such tests involves a number of
major drawbacks. Firstof all, the steady-state method
makes it possible to determine only the thermal con-
ductivities of the structural material; it is impossible
with this method, however, to determine the heat
capacity or the thermal diffusivity. Secondly, tempera-
tures that are nonsteady are reduced by averaging to
steady temperatures in the processing of the experi-
mental results, thus making it impossible to achieve
exact determinations of the required thermal indices.
Thirdly, natural thermophysical tests can be carried
out only under winter conditions, and the experiments
last from 1 to 1.5 months in this case.

The familiar nonsteady methods of determining the
thermal characteristics can be applied only to the
study of specific specimens of structural materials,
and only under laboratory conditions. These methods
are exceedingly complex for full-scale structural
models, and are entirely unsuited to testing under
realistic operational conditions.

This paper develops a new approach to the problem,
involving the use of the quantitative relationships
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Fig. 1. Temperature curves in

multilayer constructions (7,

hour, t, °K): 1) tin, 2) t;, 3)t5,
4)t], 5) i, 6) toyt.

governing the nonsteady temperature field. We examine
methods of determining the thermal conductivity and
volumeheat capacity of the material in individual layers

of the construction; these methods are based on know-
ing the temperatures t}k, which vary during T at the
boundaries of separation between these layers. These
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Fig. 2. Temperature curves in
one-layer construction (7, hour,

%
t, °K): 1) tin, 2) t;, 3) toyut-

methods presume the use of a standard. The experi-
mental work involves the following.

Thermoelectric sensors are mounted at a given
level on the boundaries of separationbetween the layers
and on the surfaces of the multilayer wall being in-
vestigated. A square plate (the standard)—with its
center at that level—is attached tightly to the inside
surface of the wall. An additional sensor is mounted
at the center of the plate surface, and all of the ther-
moelectric sensors are connected to an automatic re-
cording device. The standard plate must be fabricated
of a homogeneous dry material whose thermophysical
characteristics Ay and C; must be known in advance.
The dimensions of this standard must ensure uniformity
of the heat-transfer process at the section of the wall
being studied, and the thickness Ax, must be com-
mensurate with the thicknesses of the layers, which
were assumed in the derivation of (5).

Thus, let us examine a multilayer construction
consisting of the standard and n layers: Axy Axy,
AXjy, ..., Axp and with Aj and Cj that are constant for
each of these layers. The uniform process of heat
transfer in such a medium is described by the system (2]

9 s
C,-at" r, %) _ Y 0%, {t, )

Py FYCR XA Ky (1)
under the conditions
1.0, x) =1 (0,
to(t, 0) =14, (1), t,(t, I) =tour(z); (2)

Z‘f—l ('B, X,-) = t] (Tg xj)»
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Table 1

The Iteration Process of Determining the Thermophysical Characteristics of a Four-
layer Construction

S As o | o | o | o
0 [1.68000/0.07200! 0,24000 | 1.68000 | 1680.000 |.168.000 | 1050.000 | 1680.000 | 15.58664
1 11.59600(0.07920; 0.22800 | 1.59600 | 1848,000 | 193.600 | 1156.000 | 1848.000| 5.29461
2 |1.51200/0.08640| 0.21600 | 1.51200 | 2016.000 | 201.600 | 1260.000 | 2016.000 | 0.65902
3 {1.,42800(0.09360; 0.20400 | 1.42800 |2100.000|218,400 ! 1365.000|2100.000 | 0.16835
4 11.4700010.09000| 0.19200 | 1.47000 | 2016.000 | 210.000} 1310.000 | 2016.000 | 0.11148
5 {1.44900/0.08640!0.19800 | 1.44900 |2058.000 | 214.200 | 1338.750 | 2058.000 | 0.09369
6 11.42800/0.08280| 0.19500 | 1.45956 | 2037.000 | 212.100 | 1325.646 | 2037.000 | 002680
7 11,438500.07920/ 0.19656 | 1.45428 | 2016.000 | 214.150 | 1334.298 | 2047 .500 | 0.00877
8 11.44900/0.07660{ 0.19572 | 1.44900 |2026.500 | 214.200 | 1338.200 | 2058 .000 | 0.00496
55 11.44300/0.05484/0.18276 | 1.44444 12090.634 | 115.526 | 1274 658 | 2096.724 | 0.00035
56 11.44168/0.05484| 0.18278 | 1.44212 1 2091.978115.752|1273.314 | 2098 .026 | 0.00012
57 11,44240/0.05472| 0.18278 | 1.44372 | 2097.522 | 115.872|1272.970 1 2099.328 | 0.00004

Table 2

The Iteration Process for the Determination of the Thermophysical Characteristics of a

Sandwich Panel in a Building That Is in Use (the first method)

I Y A
0 |1,450] 0.046 1.450 1.450 | 2006.40 | 43,89 2006.40 | 2006.40 {15.88
1 11.2681 0.058 1.268 1.268 | 2090.00 | 54.84 | 2090.00 | 2090.40 | 8.286
2 |1.087| 0.070 1.087 1.087 1839.20 | 65,79 | 1839.20 | 1839.20 | 3.567
3 10.906) 0.081 0,906 | 0.906 1965.30 | 76.74 | 1965.30 | 1965.30 | 1,478
4 10.725§ 0.075 0.725 0.997 | 2090.00 | 71.27 | 2090.00 | 2090.00 | 0,640
5 [0.815] 0.081 0.544 1.087 | 2027.30 |65.80| 2027.30 | 2027.30 § 0,187
6 10.906] 0.078 0.635 1.042 | 2058.65 |60.33| 2058.65 | 2058.65 | 0,049
24 11,049, 0.071 1.015 1.014 | 2048.23 (61.03 | 2084.57 | 2090.40 | 0,025
25 11.049| 0.072 1,019 1.013 | 2062.99 |60.94| 2070.81 | 2084.98 | 0,023
26 11.050) 0.074 1.024 1.012 | 2059.90 {60.86| 2077.04 | 2090.40 | 0.021
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gy (T ) g 00 ) &)
ox dx
Here 0 =7=T,i=0,1, 2, ...,1n,j=1,2, ..., n

We impose the following constraints on Aj and C;:

0 <A™, KA, 0<<CIC O™ (4)
The values of AJ™'", c*!B, AIREX | and C{nax are the

limits within which the characteristics of the given
type of material can vary. Assuming Axj to be quite
small, we replace the right-hand members of (1) by
finite 2-nd order differences [1, 3]. Then, for con-
ditions (2) and (3) we have a system of ordinary dif-
ferential equations

2
x
CiuAx—y +CAx

1% [:ti"l _li Y- ti fim A;
Ax;y Ax;

dt; _
d

i=1,2 ...,m, (5)

for the initial conditions
t,(0) = £ = const. (6)

Let us now present the mathematical formulation of
the problem. We know the temperature curves tik(T)
derived during the course of the experiment at the
boundaries of separation between the layers of the
construction within T hours under the condition of (2).
We have to select those values of A; and Cj from (4)
so that the solution of systems (5) and (6) for tj(7)—
derived for these values of A and C; with the specified
degree of accuracy—coincides with t}‘('r), i.e., so that

M=

T

1 { (7)
84 fl fl 2d

9 lg [ ) (T)] T

i=l

i’

assumes a minimum value., The values of the standard
characteristics Ay and Cj are not included among the
unknowns in this case.

This problem is an ordinary variational problem of
optimum control. The minimization of the integral in
(7) is reduced by familiar methods [4—6] to the deter-
mination of those values of Aj and Ci which provide
for the absolute maximum of the function

n

12—
H= L Ay —
Z{ —1sz—1 +CAx ( Ay '

=1

fi—t 1 .
—_ 222 A a;, — (f, —1;)?
A, ) 2(; f)], (8)
where
ap; oH .
b — 22 p(T)=0, i=1,2, ...,n (9
dt ot, pi(T) ! )

The maximization of the function H can be achieved
by the gradient method [6]. The successive approxima-
tions in this case are chosen from the formulas
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AT when AT > (A)F 4 A (L),
() + A (3)
R+l
A= hen AT (M) A(YE AP, (10)
A when AP <T(M)EFA (M),
where
7
At =ersign | 2 4o >0,
J oA,
0
i=1,2 ...,m k=012 ... (11)

These same formulas apply also to C;.

The programming procedure involves the solution
of the system of differential equations (5), (6), and
(9); in addition, it involves the determination of the
unknowns from formulas (10) and (11). The initial
values of A; and Cj (when k = 0) are chosen from con-

ditions (4). If y%dr change sign in the next step

of the approx1mat10n in this case, the corresponding
g; are set equal to € /2 However, if the quantities

S‘ o dv retain their signs, the values of sli{ are re-
i

tained, but with a slowing down of the convergence
process it is advisable to set these equal to 251. Ini-
tially the values of ] are chosen arbitrarily but &} <
< Aj. This process is continued until the required
degree of smallness for I is achieved.

Let us now assume that the curves for the tem-
perature t* are not known for all of the separation
boandarxes %; which were assumed in the der1vat1on
of (5). This may be the case if the recordmgt at
this particular boundary during the course of the ex-
periment was omitted. In a number of cases involving
the study of multilayer walls under natural conditions
this is a result of the difficulty involved in the mount-
ing of the thermoelectric sensors at the proper bound-
aries of separation, while in the case of uniform con-
structions this operation is unnecessary. On the other
hand, the thicknesses Ax; of the layers may prove to
be somewhat too large for the approximation of (1) by
system (5}, and to raise the accuracy it becomes
necessary to introduce additional scale markings into
the segment [0,7]. In each case, the values of A; for
the layers at whose boundaries t’-lk is unknown must be
assumed equal to each other (the same applies to Cj).
In the case of multilayer constructions these quantities
dencte the reduced values of A and C; of the corre-
sponding layers. This scheme for the solution of the
problem does not change in these cases, if we assume
the appropriate o; = 0 in (7). However, from theprac-
tical standpoint, it is convenient to distinguish two
methods in this case: 1) the determination of the char~
acteristics for the individual layers of a multilayer
construction; and 2) the determination of the charac-
teristics for a uniform construction (in the case of a
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multilayer construction, we have reference to the re~
duced values of the characteristics). Both of the methods
provide for the use of a standard layer. In the first
case, the sensors must be mounted at the boundaries

Table 3

The Iteration Process for the
Determination of the Thermo-
physical Characteristics of a

Sandwich Panel in a Building

That is in Use (the Second

Method)

Ne A [ I

0 | 0.1392 | 1387.76 | 0.5633
1 | 0,1740 | 1214.29 | 0.3561
2 | 0.2088 | 1040.82 | 0.1592
3 | 0.2436 | 867.35 | 0.0266
4 | 0.2784 | 693.88 | 0.1378
5 | 0.2610 | 780.62 | 0.0317
6 | 0.2436 | 867.35 | 0.0266
47 | 0.2025 | 671.31 | 0.0016
48 | 0.2032 | 670.14 | 0.0015
49 | 0.2039 | 668.8 | 0.0015

of separation between the layers, while in the second
case there is no need for such an operation.

We note that if t’f is unknown, the corresponding
initial conditions in (6) are also unknown. In the solu-
tion of (5) these conditions must be restored by inter-
polation of the quantities known from (6), which leads
to an error in the solution of (5). The magnitude of
this error is the smaller, the closer the temperature
is to the steady state. In such cases the thermal-
engineering tests must therefore be started after suf-
ficiently stable temperatures have been established
within the wall. On the other hand, the magnitude of
the error in the interpolation can be reduced by the
solution of (4) during time T' > T. With sufficiently
large T', the effect of the conditions in(6)at the instant
T =T'— T is small, and the solutions of (5) during the
time T' — T can be omitted.

We will illustrate this method by means of several
examples, most of which are the results of natural
thermophysical tests of wall constructions. A "Ural-
4" computer was used for the solution of these prob-
lems.

1. We examine the temperature curves for t"{(’r),
t3(7), and t’§(7), derived for a 4-layer construction by
calculation under the following conditions: [ = 0.31;

T = 7200 sec; Axg = 0.05; Ax; = 0.04; Axy = 0.05; Ax3 =
= 0.075; Ax4 = 0.095; Ay = 0.058; Cy = 277.97; A, = 1.440;
Cy =2100.00; Ay = 0.054; Cy = 113.40; A3 = 0.180; C3 =
=1260.00; Ay = 1.440; C4 = 2100.00; tj(0,x) = 293.186;
tin = tout = 273.16. We are confronted with the problem
of restoring the values of Aj and Cj (i = 1,2, 3,4) when
these are arbitrarily chosen (for example, for the
values of A{ and Cj in the zero line of Table 1). This
problem is presented here to illustrate the nature of
the convergence in the method being employed. The
errors in the results of the 57-th approximation with
respect to the above-cited values, on the average, do
not exceed 1.7%.

INZHENERNO-FIZICHESKII ZHURNAL

Here and in the following cases, the solution of
Eqgs. (5), (6), and (9) is achieved by the Runge-Kutta
method, with a constant interval h = 112.5 sec. How~-
ever, the output of the results and the calculation of
the various integrals involve an interval of h = 900 sec.
In this case, eight (n = 8) of the equations in (5) are
solved everywhere, i.e., additional scale markings
are introduced into the layers under consideration to
increase the accuracy of the solution of (5), but with-
out affecting the final results. For example, in this
problem each of the layers Ax; is divided into two
equal parts and in (7) oy = ag=ag=ay =1, ay=ay4=
== ag= 0.

2. We are investigating the sandwich wall panel of
a building that is in use, said panel consisting of an
inside reinforced-concrete layer Ax = 0.035, a slag-
cotton plate Ax = 0.05, and an outside reinforced-con-
crete layer Ax = 0.075, divided into two parts with
thicknesses of 0.04 and 0.035. As the standard layer
we have used a PVC plate having the dimensions 0.9 x
x 1.2, Axy = 0.06, Ay= 0.0626, and C; = 247.5. The
experiments were carried out to apply both of the
above-described methods, and the temperature graphs
for tin(r), (1), t3(r), t3(r), ti(), and tout(7) are
given in Fig. 1. The layers were further divided in
the solution of the problem, and the inadequate initial
conditions in (6) were reinforced by the linear inter-
polation of the values of tf for the case in which 7 = 0.
The results of the calculations are presented in Table
2. The formal definition of the thermal resistance of

the wall as R = \1 A X

i=1
In applying the second method, we have used only
the temperatures tiy(7), t{(7), and tou(7) (Fig. 1). The
calculation results are presented in Table 3. The value
of the thermal resistance in this case is R = 0.784,
3. The thermophysical studies were carried out on
the facing panel used in the "P" version of the 1I-49

£ in this case yields R = 0.793.

i

Table 4

The Iteration Process for the

Determination of the Thermo-

physical Characteristics of an

Outside Panel in a Building of
the P-49 "II" Series

Ne A 4 I

0 0.4640 | 1003.20 | 0.0031
1 0.4060 | 12564.00 { 0,0061
2 0.4350 | 1128.60 | 0,0014
3 0.4640 | 1003.20 | 0,0031
4 0.4489 | 1065.90 ; 0.0013
5 0.4350 | 1128.60 | 0.0014
6 0.4420 | 1097.25 | 0.0011
13 0.4222 | 1084.46 | 0,0012
14 0.4211 | 1089.39 | 0,0011
15 0.4199 | 1093.32 | 0.0011

building series; the facing panel was made up of a
'keramzit'-concrete combination, in which the 'keram-
zit' is a porous clay filler for cement. The panel ex-
hibited a thickness of 0.4. Since the textured layers
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are of ingignificant thickness, the construction is as-
sumed to be uniform and the calculations were carried
out only with application of the second method. How-
ever, the initial conditions were established by means
of measurement. For the standard layer we employed
a polyurethane-foam plate Axy = 0.05, Ay = 0.074, and
Cy=178.50. The construction being investigated here
was divided into eight arbitrary layers of identical
thickness. The temperature graph is shown in Fig. 2,
and the calculation results are given in Table 4.

Our experience in the use of this method has de-
monstrated that with the proposed procedures it be-
comes possible, within a short period of time, to de-
termine all of the thermophysical characteristics of
a barrier [wall] construction.

NOTATION

7 is the time, sec; x is the coordinate, m; x; is the
separation-point coordinate of the (i — 1)-th and i-th
beds; [ is thetotal thickness of the construction; Axj is
the thickness of the i~th bed of the construction, m;
ti(7, x) is the temperature of the i~-thbed, °K; tj is the tem-
perature at the boundary of the (i — 1)~th and i-thbeds,
calculated; ’c’ik is the temperature at the boundary of
the (i — 1)-th and i-th beds known from experiment;
tf(x) is the initial temperature of the i-th bed; tf is the
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initial temperature at the boundary of the (i — 1)-th
and i~th beds; tijp(7) and toyt(7) is the temperatures
of inside and outside surrounding surfaces; A is the
thermal conductivity of the i-th bed, W/m - deg; Cj is
the volumetric heat capacity of the i-th bed, kJ-kg/
/deg-m?% R is the thermal resistance, m®- deg/W.
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